Winter '08 1 of 20

ANIMAL DIVERSITY

CHAPTERS 32, 33 AND 34

WHAT IS AN ANIMAL?

- Animals are characterized by two basic traits:
 - They eat = heterotrophic
 - They move
 - They are multicellular
 - They lack cell walls
 - They have a diplontic life cycle
 - They have tissues which develop from germ layers

EATING

Heterotrophy

• Require organic molecules from other sources

Ingestion

- Consuming another organism in whole or in part
 - Food ranges in size from bacteria to giant squid
 - Active hunting or scavenging

Absorption

- Direct absorption of nutrients through their body wall
 - Organisms that don't have a gut

MOVING

- Movement
 - Rapid, or directional
- Most animals have the ability to move from
 - Barnacles?
 - They can shake their moneymaker
 - Their larvae swim
- Or they have a rapid movement
 - Venus fly trap?
 - Rapid closing to catch flies
- As you can see, this definition is a tad subjective

OTHER CHARACTERISTICS OF ANIMALS

- They are by definition, multicellular eukaryotes
 - Unicellular heterotrophs are among the
- They lack cell walls
 - An extracellular matrix is deposited as in connective tissue
 - Cells are connected through various junctions
- Unique tissue types related to moving "fast"
 - Nervous tissue
 - Conduct electrical impulses
 - Cognition
 - Control muscles
 - Sensory input
 - Muscle tissue
 - Contractile

ANIMAL DIVERSITY

- For convenience, there are two large groups of animals we will talk about:
- Invertebrates
- Vertebrates
- Over 1.5 million described species of animals
 - Over 1 million insects alone
 - Probably well over 10 million species exist!

ANIMAL PHYLOGENY

- This traditional phylogenetic tree is based on the body plan features shared by animal taxa
- Various morphological traits are used:
 - Are there true tissues?
 - Yes or No
 - How many layers?
 - -2 or 3
 - Type of body symmetry?
 - None
 - Radial
 - Bilateral

- Is there a body cavity?
 - Acoelomate
 - Pseudocoelomate
 - Eucoelomate
- What type of development?
 - Protostome
 - Deuterostome

Winter '08 3 of 20

ARE TISSUES PRESENT?

- What is a tissue?
 - Defined as a group of cells that work together to perform a specific task
 - If one or a few cells are removed:
 - They cannot perform their task
 - They will eventually die (usually)
- Two major groups of animals
 - Parazoa (beside animal)
 - No true tissues
 - Eumetazoa (truly among animal)
 - True tissues

HOW MANY TISSUE LAYERS?

- Organisms with true tissues may have 2 or 3 tissue layers
- The first animals formed by the invagination of a hollow ball of cells instantly created 2 tissue layers
 - This is called the diploblastic condition
 - Ectoderm on the outside
 - Endoderm on the inside
- Organisms with true tissues (Eumetazoa) may have two or three layers of tissue
- Cnidarians are the only diploblastic phylum we will look at
- In the remainder of the organisms, a third tissue layer is present
 - This is the triploblastic condition
 - Endoderm
 - Ectoderm
 - Mesoderm forms between

WHAT TYPE OF BODY SYMMETRY?

- What does symmetry tell us about phylogeny?
 - Most sponges are asymmetrical
 - A 'random' growth of cells with no plane of symmetry
 - The ancestral eumetazoan character trait is radial symmetry
 - Where there are several planes of symmetry

4 of 20

W	7inter '08	
•	The more derived trait is bilateral symmetry – 2 halves	
	- These animals can only be cut along a single plane to create two	equal' halves
	 Accompanied by cephalization 	
•	To complicate matters many animals secondarily lose their bilateral	symmetry
	- Many molluscs (snails and clams) become semi-asymmetrical	
	- Most echinoderms become pentaradially symmetrical	
•	Radial symmetry	
	- Cnidarians	
•	Bilateral symmetry	
	- The rest of the Eumetazoa	
•	Secondary radial symmetry	
	- Echinoderms	
	IS THERE A BODY CAVITY?	
•	The body cavity is called the	
	 The gut is often confused as the body cavity 	
	- In fact, the coelom is the space	the internal organs
•	The presence/type of cavity is only looked at in triploblastic animals	
•	Acoelomate	
	-	
•	Pseudocoelomate	
	-	
•	Eucoelomate	
•	The benefits of a fluid-filled cavity include:	
	 Room for internal organs to expand and move 	
	 Acts as a hydrostatic skeleton 	
	• Water is uncompressible, and muscles can work against it	
	WHAT TYPE OF DEVELOPMENT?	
•	In animals, the egg and sperm unite to form the	

- The only haploid cells are the gametes

- Called a ____

•	The zygote undergoes cleavage to produce more ce	ells
	- Eventually yields a hollow ball of cells or	
	 Made of a single layer of cells 	
•	– is the rearrange	ement of the blastula's cells to form the
	– Establishes the tissue layers in their proper arran	ngement
	- Creates the primitive digestive tract and the first	t opening ()
	which has 1 of 2 fates	
•	Fates of the blastopore include:	
	- Formation of the	
	 Anus forms at a later time 	
	- (if it does)	
	• developme	ent (mouth first)
	Formation of the	
	 Mouth forms later 	
	• developme	ent (mouth second)
•	Other developmental traits follow the same pattern	as the protostome/deuterostome dichotomy
•	Protostomes	 Deuterostomes
	cleavage	cleavage
	development	development
	- Schizocoelous	- Enterocoelous
	 Splitting of solid masses of 	 Outpockets from archenteron
	mesoderm	(primitive gut)
	Рнуц	A
•	30-35 total, depending on who you talk to	
•	We will only talk about the 9 'major' phyla	
•	Why do we discuss these and not the others?	
	Features of interest	
	Conspicuousness	
	 Importance to humans 	

Winter '08 6 of 20

– sponges		
– jellyfish, anemones, corals, hydra		
– planaria, tapeworms, flukes		
- segmented worms		
– snails, slugs, clams, squid, octopus		
– roundworms		
– insects, spiders, crustaceans, etc.		
– sea urchins, sea stars, etc.		
– vertebrates, sea squirts, lancelets		
PHYLA YOU DON'T NEED TO KNOW		
These Phyla are mentioned in your text, but you are not responsible for them:		
- Placozoa - Brachiopoda - Pria	pula	
- Kinorhyncha - Nemertea - Cyc	liophora	
- Rotifera - Acanthocephala - Tarc	digrada	
- Ectoprocta - Ctenophora - Ony	chophora	
- Phoronida - Loricifera - Hen	nichordata	
PHYLUM PORIFERA		
Poriferans (sponges) were the first animals to e	volve	
protists (Choanoflagellates) eventually deve	loped specialized	
cells to perform different functions		
Currently there are 5,500 known species of sponges		
- All are and	_	
 A few (~100) are freshwater, the rest are marine 		
PORIFERAN BODY PLAN		
Most sponges are		
Most sponges are symmetry		
- A few species show symmetry		

- Development pattern

Winter '08 7 of 20 • Sponges have no - Three layers of cells only • Pinacoderm – outside • Mesohyl – middle layer • Choanoderm – inside - Why aren't these tissues? PORIFERAN BODY PLAN • Only a few different types of cells make up the body of a sponge - Pincaocytes cover the external surfaces and line the canals • _____ and _____ to the substrate - Choanocytes line the inside of the sponge • Flagellated _____ - Spongocytes • Responsible for secreting the • Each cell is ______, having the ability to become any - Useful for asexual reproduction PHYLUM CNIDARIA • There are about 10,000 species of Cnidaria - All are aquatic and most are marine • Cnidarians are the first organisms we will look at with true tissues – ______ - Ectoderm (_____) - Endoderm (_____) - Space between is filled with mesoglea - Internal space is the gastrovascular cavity **CNIDARIAN BODY PLAN** • Because Cnidarians are diploblastic, we categorize them with respect to:

- Presence or type of body cavity

- Developmental pattern

- May have a _____ - a larval stage common to members of this group

PHYLUM PLATYHELMINTHES

- >20,000 known species	
- Class	– free-living flat worms
• Most are aquatic, both freshwater	and marine
- Class	– endoparasitic tape worms
- Class	– ecto- or endoparasitic flukes
PLATYI	HELMINTH BODY PLAN
Triploblastic (three tissue layers)	
- Ectoderm	
- Endoderm	
-	
They have a solid body construction =	
All flat worms exhibit bilateral symmetry	7
 Some degree of cephalization 	
Protostomous development	
Рн	YLUM MOLLUSCA
A very diverse and species rich phylum	
- 93,000 species have been described in	4 major classes
- Class	– chitons
- Class	– slugs and snails
- Class	– clams & oysters
- Class	– squid & octopi
Can be found in all environments marine	, freshwater and terrestrial (moist habitats)
MoL	LUSCAN BODY PLAN
F	protostomes
 The body cavity is often very 	or
in r	
But one can still see it in the	

MOLLUSCAN MANTLE & SHELL

The mantle is the tissue responsible for _____

Polyplacophores developed an 8-piece shell for

• The ancestral shell is thought to be a _____

- Gastropods have great ______ in their shells

– or have the shell drastically reduced – _____

• The name literally means bearing many plates (shells)

Bivalves have two shells that _______

Cephalopods may be ______

• Slugs have lost their shell all together

- shelled - _____

or absent – ______

MOLLUSCAN RADULA

The radula is the feeding structure of molluscs			
 In chitons and gastropods the radula is like a flexible file/rasp to 			
Cephalopods have modified their radula into a beak that is useful for			
 Bivalves are filter-feeders and have 			
PHYLUM ANNELIDA			
The segmented worms with over 16,500 described species in three major classes			
- Class tube worms			
Many bristle-like appendages on parapodia			
- Class – leeches			
• Flattened bodies with two suckers			
- Class – earthworms			
Few bristles without parapodia			
ANNELID BODY PLAN			
All areploblastic,coelomatestomes with bilateral symmetry			
Paired setae (or chaetae) on nearly all segments			
- Can be very bundles on parapodia			
- Or very in the oligochaetes or leeches			
Metameric			
 Many repeating units or segments 			
 In many, the segments are all similar – 			
- Others have segments that are specialized			
Segmented coelom provides a great			
Polychaetes			
- Predominantly worms with elaborate appendages called			
on each segment			
• Used for			

- Head contains appendages such as palps or antennae
 - Can be highly modified for filter-feeding in the tube worms

Winter '08 12 of 20 Oligochaetes - Mainly _____ (some freahwater) worms with a 'smooth' streamline body ideal for _____ • _____, but small setae or bristles are used for anchorage Hirudinida - Dorsoventrally _____ Anterior and posterior THE ECDYSOZOANS • Phylum Nematoda • Phylum Arthropoda • Characteristics of the Ecdysozoans: - These animals are covered by a _____ - Growth occurs by _____ or shedding their _____ PHYLUM NEMATODA • Approximately 25,000 described species • The most abundant group of the Eumetazoa - In terms of _____ - 90,000 nematodes can be found in a - Found in all habitats (terrestrial, marine and freshwater) - Free-living and _____ forms NEMATODE BODY PLAN • ____ploblastic, ____coelomate ____stomes • All display bilateral symmetry • Free-living species are generally _______, interstitial worms Whereas parasitic species can be ______

• Ascaris can get quite large too

• Dracunculus can grow over_____

Micrometers versus meters

Winter '08 13 of 20 Body is covered by a ______ which is shed periodically for growth - A clear, tough but ______, non-living covering • A unique feature of the nematodes is how their nerves and muscles connect - Normally, the - Nematodes do it the other way around _____ PHYLUM ARTHROPODA • Well over 1,000,000 species described! - By far the most numerous of all phyla ARTHROPOD BODY PLAN • _____ploblastic, _____, ___coelomate _____stomes All arthropods are characterized by: • External jointed skeleton with _____ - Arthropoda literally means *jointed legs* PHYLUM ARTHROPODA • Divided into four major Subphyla - Subphylum _____ • Centipedes & millipedes

Divided into four major Subphyla

- Subphylum

• Centipedes & millipedes

- Subphylum

• Spiders, scorpions, ticks & mites

- Subphylum

• Flies, beetles, butterflies, ...

- Subphylum

• Crabs, shrimp, lobsters, barnacles

ARTHROPOD BODY PLAN

Like the annelids, Metameric	
- Generally each segment has a	
- Tagmatization is the grouping of	into body regions
•,	and

Winter '08 14 of 20

Periodic	followed by periods of growth
	prior to moulting is common
	SUBPHYLUM MYRIAPODA
The centipedes and millipede	es
- 11,600 species are terrest	rial
Both have a	body plan with all segments
- Except for the head regio	n
Legs are simple and	
- Contrary to the popular b	elief, they do not have 100 or 1000 legs
- The major difference is the	ne number of legs per segment
- And their cross-sectional	shape
~30 segments \times 2 legs/segm	nent =
~190 segments × 4 legs/seg	ment =
	SUBPHYLUM CHELICERATA
The spiders, mites, scorpions	s and ticks
- 70,000 describe species a	re mainly terrestrial
 A few marine species 	
Segments are grouped into 2	common regions or tagmata
- Anterior	– legs & sensory structures
- Posterior	– lacks appendages
• (except for spinnerets)	
One pair of appendages near	the mouth is common to this subphylum
– The	
4 pairs of walking legs, no ar	ntennae
- Simple unbranched apper	ndages
	SUBPHYLUM HEXAPODA
The beetles, butterflies, flies	, bees, etc

- Over 1,000,000 described species!
 - Dominate terrestrial environments, but many are aquatic at some stage

Winter '08 15 of 20 • Three tagmata - ______ - 5 segments most with a pair of appendages - ______ - 3 segments each with a pair of legs and sometimes wings on 1 or 2 - ______ - up to 11 segments • Order Coleoptera – the Beetles - 2 pairs of wings - one hardened - Mouthparts designed for biting & chewing • Order Lepidoptera – the Butterflies - 2 pairs of scaly wings - Mouthparts for fluid feeding • Order Hymenoptera – the Bees & Wasps & Ants Very social insects - 2 pairs of wings - Chewing or sucking mouthparts • Order Diptera – the Flies - 1 pair of wings – one pair of halteres - Mouthparts for sucking fluid or piercing/biting SUBPHYLUM CRUSTACEA • The crabs, lobsters, shrimp, copepods, barnacles • 67,000 described species - Predominantly _____ with a few terrestrial species • Body divided into - Cephalothorax -5 'head' +5 'thorax' segments appendages • Head with several (2+) pairs of antennae • Often covered by a hard carapace which may extend forward as the rostrum Abdomen – _____

THE DEUTEROSTOMES

•	Phylum Echinodermata		
•	Phylum Chordata		
•	Characteristics of the deuterostomes:		
	- The blastopore is destined to become	ne the	
	- Cleavage =		
	<pre>- Development =</pre>		
	– Coelom formation =		
	Рну	LUM ECHINODERMATA	
•	Approximately 7,000 species		
	 All are marine 		
•	Divided into 5 major classes		
	 Class Crinoidea – the feather stars 		
	- Class	– the sea stars	
	- Class Ophiroidea - the brittle & bas	sket stars	
	- Class	– the sea urchins	
	- Class	– the sea cucumber	rs
	Eci	HINODERM BODY PLAN	
•		symmetry with no cepl	nalization
	 Secondary as they start out 		
	- Except for the Holothuroidea (sea c	ucumbers)	
•	Bodies are arranged on the		axis
	 Again, a slight modification for the 		
•			stem with tube feet
		•	
•	An adaptation of their		
•	All have a calcareous	(of several plates or ossicles
	- Reduced to microscopic		in the sea cucumbers

Winter '08 17 of 20

Echinoderms are highly capable of	
- Any arm with a piece of the central disc	can
Sea cucumbers can	when under duress
- They will then	
Рнуг	LUM CHORDATA
Approximately 52,000 described species	
 Found in all habitats 	
Divided into 3 major subphyla	
- Subphylum	
- Subphylum	
- Subphylum	
Characteristics of the Chordates	
The central nervous system	
• Support for some, replaced in others	
Wags when you're happy	
PHARY	NGEAL GILL SLITS
The pharyngeal arches become highly modi	ified in the more derived chordates
- Ancestrally used for	&
- In fish they form	and the
 In terrestrial chordates they form the 	
SUBPHYL	UM UROCHORDATA
Notochord and arches are only present during	ng the
As adults, they look more like cnidarians th	an chordates

- Most are filter-feeders, but one is an active predator

SUBPHYLUM CEPHALOCHORDATA

- Small, fish-like animals
- Only 25 species have been described
- Filter-feeders, catching food in their 100+ gill arches
- Believed to be the first chordates on the scene
 - Fossils found in the Burgess Shale and Chengjiang deposits

SUBPHYLUM VERTEBRATA

The first vertebrates to evolve were fish	
- These fish were a	nd had a skeleton made of
 Hagfish, lampreys 	
Modification of the pharyngeal arches into	
 Sharks and rays 	
of the	skeleton
Boney fish	
Fins became	and useful for 'walking'
 Coelacanth thought to be extinct 	
- Tiktaalik roseae as a missing link	
Movement to land	
- Amphibians can breath air but still require	water for reproduction
Independence from water gained	
- Reptiles evolved an	egg and are no longer dependent on water
Reptilian scales modified into	
 Dinosaurs take flight and evolve into birds 	
Other reptilian scales evolve into	
 Enter the first egg-laying mammals 	
Evolution of the placenta and gestation	

TRADITIONAL PHYLOGENY

Animals were traditionally grouped into taxa using the following:

Anatomical features

• True tissues
Body symmetry
• etc.
- Developmental or embryological characters
• Fate of the blastopore
• etc.
• The likely sequence of evolutionary events in this school of thought would be:
- Choanoflagellates () became multicellular and evolved into
True tissues and radial symmetry evolved
 Bilateral symmetry accompanied by cephalization
 Three major groups of body cavities
Acoelomate
Pseudocoelomate
• Eucoelomate
 Segmentation evolved independently in both protostomes and deuterostomes
Recall the idea of parsimony
The idea that the hypothesis consistent with the
comparative data must be the one
- Occam's Razor
- The fewest steps from point A to B
MOLECULAR PHYLOGENIES
• With the development of new technologies comes a new data set for comparison –
- DNA and rRNA sequencing
• hypotheses had to be developed in order to include this new data

Winter '08 20 of 20

•	Points of agreement between the two schools:		
	- The	dichotomy	
	- The	dichotomy	
	- The	dichotomy	
•	Points of disagreement:		
•	Traditional view:		
	- Molluscs, Annelids & Arthropods were grouped based on a		
	- Annelids & Arthropods were grouped based on		
	- Nematodes are in a group of		
	- Acoelomate flatworms were considered		
•	This explanation was parsimonious with the data at the time		
•	Molecular view:		
	- Platyhelminths, Annelids & Molluscs are more related and grou	ped together as the	
	Nematodes & Arthropods are more related and grouped as the _		
•	This data suggests that of th	ne true coelom in round worms	
	and flatworms was actually	, not ancestral	
•	Support from other data		
	- The larva shared by Molluscs	and Annelids	
	- Both Nematodes and Arthropods have a hard external cuticle		
	• is required to allow growth		